
Benchmarking Nearest Neighbor Search: Influence of Local Intrinsic

Dimensionality and Result Diversity in Real-World Datasets

Martin Aumüller∗ Matteo Ceccarello∗

Abstract

This paper reconsiders common benchmarking
approaches to nearest neighbor search. It is shown
that the concept of local intrinsic dimensionality
(LID) allows to choose query sets of a wide range
of difficulty for real-world datasets. Moreover, the
effect of different LID distributions on the running
time performance of implementations is empirically
studied. To this end, different visualization concepts
are introduced that allow to get a more fine-grained
overview of the inner workings of nearest neighbor
search principles. The paper closes with remarks
about the diversity of datasets commonly used
for nearest neighbor search benchmarking. It is
shown that such real-world datasets are not diverse:
results on a single dataset predict results on all
other datasets well.

1 Introduction

Nearest neighbor (NN) search is a key primitive in
many computer science applications, such as data
mining, machine learning and image processing.
For example, Spring and Shrivastava very recently
showed in [18] how nearest neighbor search methods
can yield large speed-ups when training neural
network models. In this paper, we study the
classical k-NN problem. Given a dataset S ⊆ Rd,
the task is to build an index on S to support the
following type of query: For a query point x ∈ Rd,
return the k closest points in S under some distance
measure D.

In many practical settings, a dataset consists
of points represented as high-dimensional vectors.
For example, word representations generated by the
glove algorithm [17] associate with each word in a

∗IT Unversity of Copenhagen, Denmark, {maau,mcec}@itu.dk

corpus a d-dimensional real-valued vector. Here,
common choices for d are between 50 and 300
dimensions. Finding the true nearest neighbors
in such a high-dimensional space is difficult, a
phenomenon often referred to as the “curse of
dimensionality”. In practice, it means that finding
the true nearest neighbors, in general, cannot be
solved much more efficiently than by a linear scan
through the dataset (requiring time O(n) for n
data points) or in space that is exponential in the
dimensionality d, which is impractical for large
values of d.

While we cannot avoid these general hardness
results, most datasets that are used in applications
are not truly high-dimensional. This means that the
dataset can be embedded into a lower-dimensional
space without too much distortion. Intuitively,
the intrinsic dimensionality (ID) of the dataset is
the minimum number of dimensions that allows
for such a representation [6]. There exist many
explicit ways of find good embeddings for a given
dataset. For example, the Johnson-Lindenstrauss
transformation [11] allows us to embed n data points
in Rd into Θ((log n)/ε2) dimensions such that all
pairwise distances are preserved up to a (1+ε) factor
with high probability. Another classical embedding
often employed in practice is given by principal
component analysis (PCA).

In this paper, we set our focus on the “local in-
trinsic dimensionality” (LID), a measure introduced
by Houle in [6]. We defer a detailed discussion of
this measure and its estimation to Section 2. In-
tuitively, the LID of a data point x at a distance
threshold r > 0 measures how difficult it is to dis-
tinguish between points at distance r and distance
(1 + ε)r in a dataset. Most importantly for this
study, LID is a local measure that can be associated



with a single query. It was stated in [7] that the LID
might serve as a characterization of the difficulty of
k-NN queries. One purpose of this paper is to shed
light on this statement.

A focus of this paper is an empirical study of
how the LID influences the performance of NN
algorithms. To be precise, we will benchmark
four different implementations [12] which employ
different approaches to NN search. Three of them
(HNSW [15], FAISS-IVF [10], Annoy [3]) stood out as
most performant in the empirical study conducted
by Aumüller et al. in [2]. Another one (ONNG)
was proposed very recently [8] and shown to be
competitive to the former approaches there. We
base our experiments on [2] and describe their
benchmarking approach and the changes we made
to their system in Section 3. We analyze the LID
distribution of real-world datasets in Section 4. We
will see that there is a substantial difference between
the LID distributions among these datasets. We
will then conduct two experiments: First, we fix a
dataset and choose as query set the set of points
with smallest, medium, and largest estimated LIDs.
As we will see, the larger the LID, the more difficult
the query for all implementations. Next, we will
study how the different LID distributions between
datasets influence the running time performance.
In a nutshell, it cannot be concluded that LID by
itself is a good indicator for the relative performance
of a fixed implementation over datasets. These
statements will be made precise in the evaluation
that is discussed in Section 5.

In the first part of our evaluation, we will
work in the “classical evaluation setting of nearest
neighbor search”. This means that we relate
a performance measure (such as the achieved
throughput measured in queries per second) to a
quality measure (such as the average fraction of true
nearest neighbors found over all queries). While
this is the most commonly employed evaluation
method, we will reason that this way of representing
results in fact hides interesting details about the
inner workings of an implementation. Using non-
traditional visualization techniques will provide
new insights into their query behavior on real-
world datasets. As one example, we will see
that reporting average recall on the graph-based

approaches from [15, 8] hides an important detail:
For a given query, they either find all true nearest
neighbors or not a single one. This behavior is
not shared by the two other approaches that we
consider; both yield a continuous transition from
“finding no nearest neighbors” to “finding all nearest
neighbors”.

Finally, we will challenge two more common
benchmarking approaches to NN search. First, we
will empirically observe how using small query sets
(less than 1% of the dataset) affects the robustness
of measurements. Second, we will discuss how di-
verse results on the considered real-world datasets
are. Ideally, we want to benchmark on a collection
of “interesting” datasets that show the strengths
and weaknesses of individual approaches. We will
conclude that there is little diversity among the
considered datasets: While the individual perfor-
mance observations change from dataset to dataset,
the relative performance between implementations
stays the same.

1.1 Our Contributions The main contribu-
tions of this paper are

• a detailed evaluation of the LID distribution of
many real-world datasets used in benchmarking
frameworks,

• an evaluation of the influence of the LID to the
performance of NN search implementations,

• considerations about the diversity of results
over many different datasets, and

• an exploration of different visualization tech-
niques that shed light on individual properties
of certain implementation principles.

1.2 Related Work on Benchmarking Frame-
works for NN We use the benchmarking system
described in [2] as the starting point for our study.
Different approaches to benchmarking nearest neigh-
bor search are described in [4, 5, 14]. We refer to [2]
for a detailed comparison between the frameworks.

2 Local Intrinsic Dimensionality

We consider a distance-space (Rd, D) with a dis-
tance function D : Rd×Rd → R. As described in [1],



we consider the distribution of distances within this
space with respect to a reference point x. Here,
the distribution is induced by sampling n points
from the space Rd under a certain probability dis-
tribution. We let F : R→ [0, 1] be the cumulative
distribution function of distances to the reference
point x.

Definition 2.1 ([6]). The local continuous intrinsic
dimension of F at distance r is given by

IDF (r) = lim
ε→0

ln(F ((1 + ε)r)/F (r))

ln((1 + ε)r/r)
,

whenever this limit exists.

The measure relates the increase in distance
to the increase in probability mass (the fraction
of points that are within the ball of radius r and
(1 + ε)r around the query point). Intuitively, the
larger the LID, the more difficult it is to distinguish
true nearest neighbors at distance r from the rest
of the dataset. As described in [7], in the context
of k-NN search we set r as the distance of the k-th
nearest neighbor to the reference point x.

Estimating LID We use the Maximum-
Likelihood estimator (MLE) described in [13, 1]
to estimate the LID of x at distance r. Let
r1 ≤ . . . ≤ rk be the sequence of distances of the
k-NN of x. The MLE ˆIDx is then

(2.1) ˆIDx = −

(
1

k

k∑
i=1

ln
ri
rk

)−1

.

Amsaleg et al. showed in [1] that MLE estimates
the LID well.

3 Overview over the Benchmarking
Framework

We use the ann-benchmarks system described
in [2] to conduct our experimental study. Ann-
benchmarks is a framework for benchmarking NN
search algorithms. It covers dataset creation,
performing the actual experiment, and storing
the results of these experiments in a transparent
and easy-to-share way. Moreover, results can be
explored through various plotting functionalities,
e.g., by creating a website containing interactive
plots for all experimental runs.

Ann-benchmarks interfaces with a NN search
implementation by calling its preprocess (index
building) and search (query) methods with certain
parameter choices. Implementations are tested on
a large set of parameters usually provided by the
original authors of an implementation. The answers
to queries are recorded as the indices of the points
returned. Ann-benchmarks stores these parameters
together with further statistics such as individual
query times, index size, and auxiliary information
provided by the implementation. We refer to [2] for
more details.

Compared to the system described in [2], we
added tools to estimate the LID based on (2.1),
pick “challenging query sets” according to the LID
of individual points, and added new datasets and im-
plementations. Moreover, we implemented a mech-
anism that allows an implementation to provide
further query statistics after answering a query. To
showcase this feature, all implementations consid-
ered in this study report the number of distance
computations performed to answer a query.1

4 Algorithms and Datasets

4.1 Algorithms Nearest neighbor search algo-
rithms for high dimensions are usually graph-, tree-,
or hashing-based. We refer the reader to [2] for
an overview over these principles and available im-
plementations. In this study, we concentrate on
the three implementations considered most per-
formant in [2], namely HNSW [15], Annoy [3] and
FAISS-IVF [10] (IVF from now on). We consider
the very recent graph-based approach ONNG [8] in
this study as well.

HNSW and ONNG are graph-based approaches.
This means that they build a k-NN graph during
the preprocessing step. In this graph, each vertex
is a data point and a directed edge (u, v) means
that the data point associated with v is “close” to
the data point associated with u in the dataset.
At query time, the graph is traversed to generate
candidate points. Algorithms differ in details of the
graph construction, how they build a navigation
structure on top of the graph, and how the graph

1We thank the authors of the implementations for their help
and responsiveness in adding this feature to their library.



Dataset Data Points Dimensions avg(LID) median(LID) Metric

SIFT [9] 1 000 000 128 21.9 19.2 Euclidean
MNIST 65 000 784 14.0 13.2 Euclidean
Fashion-MNIST [19] 65 000 784 15.6 13.9 Euclidean
GLOVE [17] 1 183 514 100 18.0 17.8 Angular/Cosine
GLOVE-2M [17] 2 196 018 300 26.1 23.4 Angular/Cosine
GNEWS [16] 3 000 000 300 21.1 20.1 Angular/Cosine

Table 1: Datasets under consideration with their average local intrinsic dimensionality (LID) computed
by MLE [1] from the 100-NN of all the data points. For each dataset we use 10 000 query points.

is traversed.
Annoy is an implementation of a random projec-

tion forest, which is a collection of random projec-
tion trees. Each node in a tree is associated with a
set of data points. It splits these points into two sub-
sets according to a chosen hyperplane. If the dataset
in a node is small enough, it is stored directly and
the node is a leaf. Annoy employs a data-dependent
splitting mechanism in which a splitting hyperplane
is chosen as the one splitting two “average points”
by repeatedly sampling dataset points. In the query
phase, trees are traversed using a priority queue
until a predefined number of points is found.

IVF builds an inverted file based on clustering
the dataset around a predefined number of centroids.
It splits the dataset based on these centroids by
associating each point with its closest centroid.
During query it finds the closest centroids and
checks points in the dataset associated with those.

We remark that both IVF and HNSW implemen-
tations are the ones provided with FAISS2.

4.2 Datasets Table 1 presents an overview over
the datasets that we consider in this study. We
restrict our attention to datasets that are usually
used in connection with Euclidean distance and
Angular/Cosine distance. For each dataset, we
compute the LID distribution with respect to the
100-NN as discussed in Section 2. SIFT, MNIST, and
GLOVE are among the most-widely used datasets for
benchmarking nearest neighbor search algorithms.
Fashion-MNIST is considered as a replacement for
MNIST, which is usually considered too easy for
machine learning tasks [19].

2https://github.com/facebookresearch/faiss

Figure 1: LID distribution for each dataset. Ticks
below the distribution curves represent single
queries. Lines within each distribution curve corre-
spond to the 25, 50 and 75 percentile. The red line
marks the 10 000 largest estimated LID, which we
use as a threshold value to define hard query sets.

Figure 1 provides a visual representation of
the estimated LID distribution of each dataset.
While the datasets differ widely in their original
dimensionality, the median LID ranges from around
13 for MNIST to about 23 for GLOVE-2M. The
distribution of LID values is asymmetric and shows
a long tail behavior. MNIST, Fashion-MNIST,
SIFT, and GNEWS are much more concentrated
around the median compared to the two glove-
based datasets.



5 Evaluation

This section reports on the results of our experi-
ments. Due to space constraints, we only present
some selected results. More results can be explored
via interactive plots at http://ann-benchmarks.

com/edml19/, which also contains a link to the
source code repository. For a fixed implementation,
the plots presented here consider the pareto frontier
over all parameter choices [2]. Tested parameter
choices and the associated plots are available on the
website.

Experimental Setup Experiments were run
on 2x 14-core Intel Xeon E5-2690v4 (2.60GHz) with
512GB of RAM using Ubuntu 16.10 with kernel
4.4.0. Index building was multi-threaded, queries
where answered sequentially in a single thread.

Quality and Performance Metrics As qual-
ity metric we measure the individual recall of each
query, i.e., the fraction of points reported by the
implementation that are among the true k-NN. As
performance metric, we record individual query
times and the total number of distance computa-
tions needed to answer all queries. We usually
report on the throughput (the average number of
queries that can be answered in one second), but
we will also inspect individual query times.

Objectives of the Experiments Our experi-
ments are tailored to answer the following questions:

(Q1) How robust are measurements when splitting
query set and dataset at random multiple
times? (Section 5.1)

(Q2) How does the LID of a query set influence the
running time performance? (Section 5.2)

(Q3) How diverse are measurements obtained on
datasets? Do relative differences between the
performance of different implementations stay
the same over multiple datasets? (Section 5.3)

(Q4) How well does the number of distance compu-
tations reflect the relative running time per-
formance of the tested implementations? (Sec-
tion 5.3)

(Q5) How concentrated are quality and performance
measures around their mean for the tested
implementations? (Section 5.4)

Choosing Query Sets All runs are based on
10 000 queries chosen from the dataset. Depending
on the question we try to answer, we employ
different selection strategies for choosing the query
set.

To answer Q1 we employ random splits as done
in the cross-validation technique: 10 000 randomly
selected points are used as queries, while the rest
are used as data points. Repeating the procedure
10 times yields 10 queryset/dataset pairs.

For the discussion of Q2–Q5 we select three
different querysets from each dataset: (i) The
dataset that contains the 10 000 points with the
lowest estimated LID (which we denote easy), 10 000
points around the data point with median estimated
LID (denoted medium), and the 10 000 points with
the largest estimated LID (dubbed hard). Figure 1
marks with a red line the LID used as a threshold
to build the hard queryset.

5.1 Robustness of Random Split Figure 2
shows the result of ten cross-validation runs on
random splits of GLOVE for ONNG and Annoy. The
plot relates the average number of queries that can
be answered in one second to the average recall
achieved with a certain parameter configuration.
This means that we want data points to be up and
to the right. The plot shows that the 10 splits give
very similar results and represent the performance
of the implementation accurately. It is interesting
to see that a query set representing less than 1%
of the dataset points shows such a robust behavior.
We conclude that the random split allows for robust
measurements.

5.2 Influence of LID on Performance Fig-
ure 3 shows results for the influence of using only
points with low, middle, and large estimated LID
as query points, in SIFT and GLOVE-2M. We ob-
serve a clear influence of the LID of the query set
on the performance: the larger the LID, the more
down and to the left the graphs move. This means
that, for higher LID, it is more expensive, in terms
of time, to answer queries with good recall. For
all datasets except GLOVE-2M, all implementations
were still able to achieve close to perfect recall with
the parameters set. This means that all but one



0 0.25 0.5 0.75 1

102

103

104

Recall

Q
P

S
(1

/
s)

0 0.25 0.5 0.75 1

Recall

Figure 2: (Approximate) Recall-QPS (1/s) tradeoff - up and to the right is better. 10 random splits of
the dataset; left: ONNG, right: ANNOY.

0 0.25 0.5 0.75 1

101

102

103

104

105

Q
P

S
(1

/
s)

0 0.25 0.5 0.75 1

Annoy IVF HNSW ONNG

0 0.25 0.5 0.75 1

0 0.25 0.5 0.75 1

101

102

103

104

105

Recall

Q
P

S
(1

/
s)

0 0.25 0.5 0.75 1

Recall

0 0.25 0.5 0.75 1

Recall

Figure 3: (Approximate) Recall-QPS (1/s) tradeoff – up and to the right is better; top: SIFT, bottom:
GLOVE-2M; left: easy, middle: middle, right: hard.

0 0.25 0.5 0.75 1
101

102

103

104

105

Recall

Q
P

S
(1

/
s)

Fashion-MNIST (H) Fashion-MNIST (M) GLOVE (H) GLOVE (M) GLOVE-2M (E)

GLOVE-2M (M) GNEWS (M) SIFT (H) SIFT (M)

0 0.25 0.5 0.75 1

Recall

Figure 4: (Approximate) Recall-QPS (1/s) tradeoff – up and to the right is better; left: ONNG, right:
Annoy; (E) — easy, (M) — medium, (H) — hard.



of the tested datasets do not contain too many
“noisy queries”. Already the queries around the me-
dian prove challenging for most implementations.
For the most difficult queries (according to LID),
only IVF and ONNG achieve close to perfect recall on
GLOVE-2M.

Figure 4 reports on the results of ONNG and
Annoy on selected datasets. Comparing results to
the LID measurements depicted in Figure 1, the
estimated median LID gives a good estimate on the
relative performance of the algorithms on the data
sets. As an exception, SIFT (M) is much easier than
predicted by its LID distribution. In particular for
Annoy, the difficult SIFT instance is as challenging
as the medium GLOVE version. The easy version
of GLOVE-2M turns out to be efficiently solvable
by both implementations (taking about the same
time as it takes to answer the difficult instance
of Fashion-MNIST, which has a much higher LID).
From this, we cannot conclude that LID as a single
indicator explains performance differences of an
implementation on different datasets.

As a side note, we remark that Fashion-MNIST
is as difficult to solve as MNIST for all implemen-
tations, and is by far the easiest dataset for all
implementations. Thus, while there is a big differ-
ence in the difficulty of solving the classification
task [19], there is no measurable difference between
these two datasets in the context of NN search.

5.3 Diversity of Results Figure 5 gives an
overview over how algorithms compare to each
other among all “medium difficulty” datasets. We
consider two metrics, namely the number of queries
per second (top plot), and the number of distance
computations (bottom plot). For two different
average recall thresholds (0.75 and 0.9) we then
select, for each algorithm, the best performing
parameter configuration that attains at least that
recall. For each dataset, the plots report the ratio
with the best performing algorithm on that dataset,
therefore the best performer is reported with ratio
1. Considering different dataset, we see that there
is little variation in the ranking of the algorithms.
Only the two graph-based approaches trade ranks,
all other rankings are stable. Interestingly, Annoy
makes much fewer distance computations but is

Figure 5: Ranking of algorithms on five different
datasets, according to recall ≥ 0.75 and ≥ 0.9, and
according to two different performance measures:
number of queries per second (top) and number of
distance computations (bottom). Both plots report
the ratio with the best performing algorithm on
each dataset: for the queries per second metric a
larger ratio is better, for the number of distance
computations metric, a smaller ratio is better.

consistently outperformed by IVF.3

Comparing the number of distance computa-
tions to running time performance, we see that an
increase in the number of distance computations
is not reflected in a proportional decrease in the
number of queries per second. This means that the
candidate set generation is in general more expen-
sive for graph-based approaches, but the resulting
candidate set is of much higher quality and fewer
distance computations have to be carried out. Gen-
erally, both graph-based algorithms are within a
factor 2 from each other, whereas the other two
need much larger candidate lists to achieve a cer-

3We note that IVF counts the initial comparisons to find the
closest centroids as distance computations, whereas Annoy did not

count the inner product computations during tree traversal. We

plan to report on updated results in the workshop.



tain recall. The relative difference usually ranges
from 5x to 30x more distance computations for the
non-graph based approaches, in particular at high
recall. This translates well into the performance
differences we see in this setting: consider for in-
stance Figure 3, where the lines corresponding to
HNSW and ONNG upper bound the lines relative to
the other two algorithms.

5.4 Reporting the distribution of perfor-
mance In the previous sections, we made extensive
use of recall/queries per second plots, where each
configuration of each algorithm results in a single
point, namely the average recall and the inverse
of the average query time. As we shall see in this
section, concentrating on averages can hide interest-
ing information in the context of k-NN queries. In
fact, not all queries are equally difficult to answer.
Consider the plots in Figure 6, which report perfor-
mance of the four algorithms4 on the GLOVE-2M
dataset, medium difficulty. The left plot reports the
recall versus the number of queries per second, and
black dots correspond to the averages. Additionally,
for each configuration, we report the distribution of
the recall scores: the baseline of each recall curve is
positioned at the corresponding queries per second
performance. Similarly, the right plot reports on
the inverse of the individual query times (the aver-
age of these is the QPS in the left plot) against the
average recall. In both plots, the best performance
is achieved towards the top-right corner.

Plotting the distributions, instead of just re-
porting the averages, uncovers some interesting be-
haviour that might otherwise go unnoticed, in par-
ticular with respect to the recall. The average recall
gradually shifts towards the right as the effect of
more and more queries achieving good recalls. Per-
haps surprisingly, for graph-based algorithms this
shift is very sudden: most queries go from having
recall 0 to having recall 1, taking no intermediate
values. Taking the average recall as a performance
metric is convenient in that it is a single number
to compare algorithms with. However, the same
average recall can be attained with very different

4In order not to clutter the plots, we fixed parameters as follows:

IVF — number of lists 8192; Annoy — number of trees 100; HNSW —
efConstruction 500; ONNG — edge 100, outdegree 10, indegree 120.

distributions: looking at such distributions can pro-
vide more insight.

For the plot on the right, we observe that
individual query times of Annoy, IVF, and ONNG

are well concentrated around their mean. However,
for HNSW query times fluctuate widely around their
mean; in fact, the average query time is not well
reflected in the query time distribution.

For space reasons, we do not report other param-
eter configurations and datasets, which nonetheless
show similar behaviours.

6 Summary

In this paper we studied the influence of LID to the
performance of nearest neighbor search algorithms.
We showed that LID allows to choose query sets
of a wide range of difficulty from a given dataset.
We also showed how different LID distributions
influence the running time performance of the
algorithms. Here, we could not conclude that the
LID alone can predict running time differences
well. In particular, SIFT is usually easier for the
algorithms, while GLOVE’s LID distribution would
predict it to be the easier dataset of the two.

We introduced novel visualization techniques
to show the uncertainty within the answer to a set
of queries, which made it possible to show a clear
difference between the graph-based algorithms and
the other approaches.

We hope that this study initiates the search for
more diverse datasets, or for theoretical reasoning
why certain algorithmic principles are generally
better suited for nearest neighbor search. From
a more practical side, we would be interested in
seeing whether the LID can be used in the design
of NN algorithms to guide the search process or
parameter selection. For example, algorithms could
adapt to the LID of the current set of k-NN found so
far, stopping early or spending more time depending
on the LID of the candidates.

References

[1] Amsaleg, L., Chelly, O., Furon, T., Girard, S.,
Houle, M.E., Kawarabayashi, K.I., Nett, M.: Esti-
mating local intrinsic dimensionality. In: KDD’15.
pp. 29–38. ACM (2015)



HNSW ONNG

Annoy IVF

0.0 0.4 0.8 0.0 0.4 0.8

1e+01

1e+02

1e+03

1e+04

1e+05

1e+01

1e+02

1e+03

1e+04

1e+05

recall

Q
P

S
(1

/s
)

HNSW ONNG

Annoy IVF

10 100 1000 10000 10 100 1000 10000

0.3

0.6

0.9

0.3

0.6

0.9

1/ query-time

re
ca

ll

Figure 6: Distribution of performance for queries on the GLOVE-2M (medium difficulty) dataset. Looking
just at the average performance can hide interesting behaviour.

[2] Aumüller, M., Bernhardsson, E., Faithfull, A.:
Ann-benchmarks: A benchmarking tool for approx-
imate nearest neighbor algorithms. In: SISAP’17.
pp. 34–49 (2017)

[3] Bernhardsson, E.: Annoy, https://github.com/
spotify/annoy

[4] Curtin, R.R., Cline, J.R., Slagle, N.P., March,
W.B., Ram, P., Mehta, N.A., Gray, A.G.: ML-
PACK: A scalable C++ machine learning library.
J. of Machine Learning Research 14, 801–805 (2013)

[5] Edel, M., Soni, A., Curtin, R.R.: An automatic
benchmarking system. In: NIPS 2014 Workshop on
Software Engineering for Machine Learning (2014)

[6] Houle, M.E.: Dimensionality, discriminability,
density and distance distributions. In: Data Mining
Workshops (ICDMW). pp. 468–473. IEEE (2013)

[7] Houle, M.E., Schubert, E., Zimek, A.: On the
correlation between local intrinsic dimensionality
and outlierness. In: SISAP’18. pp. 177–191 (2018)

[8] Iwasaki, M., Miyazaki, D.: Optimization of In-
dexing Based on k-Nearest Neighbor Graph for
Proximity Search in High-dimensional Data. ArXiv
e-prints (Oct 2018)

[9] Jégou, H., Douze, M., Schmid, C.: Product
quantization for nearest neighbor search. IEEE
Trans. Pattern Anal. Mach. Intell. 33(1), 117–128
(2011)

[10] Johnson, J., Douze, M., Jégou, H.: Billion-scale
similarity search with gpus. CoRR abs/1702.08734
(2017)

[11] Johnson, W.B., Lindenstrauss, J., Schechtman,

G.: Extensions of lipschitz maps into banach
spaces. Israel Journal of Mathematics 54(2), 129–
138 (1986)

[12] Kriegel, H., Schubert, E., Zimek, A.: The (black)
art of runtime evaluation: Are we comparing
algorithms or implementations? Knowl. Inf. Syst.
52(2), 341–378 (2017)

[13] Levina, E., Bickel, P.J.: Maximum likelihood
estimation of intrinsic dimension. In: NIPS’15. pp.
777–784 (2005)

[14] Li, W., Zhang, Y., Sun, Y., Wang, W., Zhang, W.,
Lin, X.: Approximate nearest neighbor search on
high dimensional data - experiments, analyses, and
improvement (v1.0). CoRR abs/1610.02455 (2016)

[15] Malkov, Y.A., Yashunin, D.A.: Efficient and
robust approximate nearest neighbor search using
Hierarchical Navigable Small World graphs. ArXiv
e-prints (Mar 2016)

[16] Mikolov, T., Chen, K., Corrado, G., Dean, J.:
Efficient estimation of word representations in
vector space. CoRR abs/1301.3781 (2013)

[17] Pennington, J., Socher, R., Manning, C.D.: Glove:
Global vectors for word representation. In: Em-
pirical Methods in Natural Language Processing
(EMNLP). pp. 1532–1543 (2014)

[18] Spring, R., Shrivastava, A.: Scalable and sustain-
able deep learning via randomized hashing. In:
KDD’17. pp. 445–454 (2017)

[19] Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist:
a novel image dataset for benchmarking machine
learning algorithms. CoRR abs/1708.07747 (2017)


